
Basic concept of NP Hard & NP Complete

NP-Hard and NP-Complete Problems

For many of the problems we know and study, the best

algorithms for their solution have computing times can be

clustered into two groups-

 1. Solutions are bounded by the polynomial

 2. Solutions are bounded by a nonpolynomial

No one has been able to device an algorithm which is bounded

by the polynomial of small degree for the problems belonging

to the second group.

The theory of the NP-Completeness does not provide any

method of obtaining polynomial time algorithms for the

problems of the second group. “Many of the problems for

which there is no polynomial time algorithm available are

computationally related”.

Perhaps with Quantum Computing ! Who knows? Open ?

Two classes

1. NP-Complete- have the property that it can be solved

in polynomial time if all other NP-Complete problems

can be solved in polynomial time.

 2. NP-Hard- if it can be solved in polynomial time then

 all NP-Complete can be solved in polynomial time.

NP-Hard

NP-Complete

“All NP-Complete problems are NP-Hard but not all NP-

Hard problems are not NP-Complete.”

 NP-Complete problems are subclass of NP-Hard

Non deterministic algorithms

When the result of every operation is uniquely defined then it

is called deterministic algorithm. When the outcome is not

uniquely defined but is limited to a specific set of possibilities,

we call it non deterministic algorithm.

We use new statements to specify such algorithms.

1. choice(S) arbitrarily choose one of the elements of set S

2. failure signals an unsuccessful completion

3. success signals a successful completion

The assignment X:= choice(1:n) could result in X being

assigned any value from the integer range[1..n]. There is no

rule specifying how this value is chosen.

The nondeterministic algorithms terminates unsuccessfully

iff there is no set of choices which leads to the successful

signal.

The computing time for failure and success is taken to be

O(1). A machine capable of executing a nondeterministic

algorithms are known as nondeterministic machines (does not

exist in practice).

Ex. Searching an element x in a given set of elements A(1:n).

We are required to determine an index j such that A(j) = x or j

= 0 if x is not present.

 j := choice(1:n)

 if A(j) = x then print(j); success endif

 print(‘0’); failure

procedure NSORT(A,n);

//sort n positive integers//

var integer A(n), B(n), n, i, j;

begin

 B := 0; //B is initialized to zero//

 for i := 1 to n do

 begin

 j := choice(1:n);

 if B(j) <> 0 then failure;

 B(j) := A(j);

 end;

 for i := 1 to n-1 do //verify order//

 if B(i) > B(i+1) then failure;

 print(B);

 success;

end.

“Nondeterministic machines does not make any copies of an

algorithm every time a choice is to be made. Instead it has

the ability to correctly choose an element from the given set”.

A deterministic interpretation of the nondeterministic

algorithm can be done by making unbounded parallelism in

the computation.

Each time a choice is to be made, the algorithm makes several

copies of itself, one copy is made for each of the possible

choices.

Nondeterministic decision algorithm- Generates 0 or 1 as

their output.

Many optimization problems can be recast in to decision

problems with the property that the decision algorithm can be

solved in polynomial time iff the corresponding optimization

problem.

Definition: The time required by a nondeterministic

algorithm performing on any given input is the minimum

number of steps required to reach to a successful completion if

there exists a sequence of choices leading to a such

completion.

In case the successful completion is not possible then the

time required is O(1). A nondeterministic algorithm is of

complexity O(f(n)) if for all input size n, n n0, that results

in a successful completion the time required is at most c.f(n)

for some constant c and n0.

procedure DKP(P, W, n, M, R, X);

var integer P(n), W(n), R, X(n), n, M, i;

begin

 for i := 1 to n do

 X(i) := choice(1, 0);

 if or then failure

 else success;

end.

 
 ni

MiXiW
1

))()(( 
 ni

RiXiP
1

))()((

 Time complexity is O(n).

Satisfiability problem: Let x1,x2,...,xn denotes boolean

variables. Let denotes the negation of xi. A literal is either a

variable or its negation. A formula in propositional calculus is

an expression that can be constructed using literals and and or

or.

ix

Formula is in conjugate normal form (CNF) iff it is

represented as ci, where the ci are clauses each represented

as V lij.

k
i 1

It is in disjunctive normal form (DNF) iff it is represented as

 ci and each clause is represented as lij. k
i 1

thus is in DNF while

is in CNF. The satisfiability problem is to determine if a

formula is true for some assignment of truth values to the

variables.

)()(4321 xxxx )()(2143 xxxx 

procedure EVAL(E, n);

//determines if the propositional formula E is satisfiable//

var boolean: x[1..n];

begin

 for i := 1 to n do //choose a truth value assignment//

 xi := choice(true, false);

 if E(x1,...,xn) is true then success //satisfiable//

 else failure

end.

NP-Hard and NP-Complete

An algorithm A is of polynomial complexity is there exist a

polynomial p() such that the computing time of A is O(p(n)).

Definition: P is a set of all decision problems solvable by a

deterministic algorithm in polynomial time. NP is the set of all

decision problems solvable by a nondeterministic algorithm in

polynomial time.

NPP 

The most famous unsolved problem in Computer Science is

whether P=NP or NPP  NPP
?



Cook’s theorem: Satisfiability is in P if P = NP

Definition. Let L1 and L2 be problems. L1 reduces to L2()

iff there is a way to solve L1 by deterministic polynomial time

algorithm that solve L2 in polynomial time.

21 LL

 if we have a polynomial time algorithm for L2 then we can

solve L1 in polynomial time.



Definition. A problem L is NP-Hard if and only if

satisfiability reduces to L. (). Llitysatisfiabi 

Definition. A problem L is NP-Complete if and only if L is

NP-Hard and . NPL

Halting problem: An example of NP-Hard decision problem

which is not NP-Complete.

Assignment

Q.1)What are the classes of NP problem?

Q.2)Explain nondeterministic algorithm with an

example.

Q.3)Which problem is NP prpblem?

